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Abstract

Since their introduction by Eilenberg and Mac Lane [3], categories have been used
to generalise the structures of mathematics. In this thesis we discuss categories
of groups, topological spaces, and sets and we will study the properties they
and do not share. We discuss the de�nitions of categories, functors, natural
transformations, limits and colimits. For each of these de�nitions we will consider
both familiar and more abstract examples as well as the theorems that relate
them. Finally we will use category theory to introduce a special type of functor
called a sheaf. A description of sheaf construction through the étalé space will be
given, which in turn allows us to explore the connectedness of topological spaces.
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Chapter 1

What is a Category?

1.1 De�ning a Category

In mathematics we study objects such as sets, rings or group, vector spaces,
topologies, and algebras. For each of these objects we specify speci�c maps
between them like homomorphisms or continuous maps. One might notice that
these objects and their maps share properties, for example with most of these
objects we can de�ne a kernel of a map between them. The study of these
objects, their similarities and their di�erences, is what we call category theory.
The property of having special types of maps between these objects is the starting
point for studying category theory.

De�nition 1.1.1. A category C is a class ob(C) of objects and a class hom(C)
of morphisms between the objects such that:

1. For every object X there exists the identity morphism 1X : X → X from
X to X.

2. For every pair of morphisms f : X → Y and g : Y → Z, there exists a
composite morphism gf : X → Z ∈ hom(C).

3. For every morphism f : X → Y , the composition satis�es 1Y f = f1X = f .

4. Composition of any three morphisms f : X → Y , g : Y → Z and h : Z →
W is associative. That is h(gf) = (hg)f = hgf .

Furthermore if f is a morphism f : X → Y from object X to object Y then X
is the domain of f and Y is the codomain of f . We can see that the objects we
have already mentioned are categories once we describe their morphisms. Some
examples are as follows.

Example 1.1.2.

1. Sets are objects with functions between them as morphisms. The identity
map for each set is its identity morphism, composition of functions is well
de�ned and is associative. We denote this category Set.
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2. Rings are objects with the morphisms of homomorphisms. Homomorphisms
are a type of function so clearly satisfy the axioms. We denote this category
Ring.

3. Commutative rings give us the category CRing with morphisms as ring
homomorphisms.

4. The category Grp has objects as groups and the morphisms are group
homomorphisms.

5. Abelian groups and their group homomorphisms form the category Ab.

6. Finite vector spaces over a �eld K are objects with the morphism as linear
maps. They form the category VecK .

7. The class of topologies as objects with continuous functions as morphisms
form a category. We denote this category Top.

8. The category of based point topologies has the objects (X, x) where X is
a topology and x ∈ X is the base point. Base point preserving continuous
functions are the morphisms of this category which is denoted Top∗.

9. The class of rings with morphisms as maps of the underlying sets is a
category.

Where the morphisms are obvious we will often refer to a category just by its
objects.

De�nition 1.1.3. Let C and D be categories. We say that D is a subcategory

of C denoted D ⊆ C if every object of D is an object of C and every morphism
of D is a morphism of C.

A similarly familiar structure is that of products of categories.

De�nition 1.1.4. The product of two categories C and D de�nes a product

category C×D. A unique objectX×Y ∈ ob(C×D) is given for everyX ∈ ob(C)
and Y ∈ ob(D). The morphisms f : X × Y → Z ×W ∈ hom(C ×D) are given
uniquely as the pair f = (fC , fD) for every pair of morphisms fC ∈ hom(C) and
fD ∈ hom(D) where we de�ne composition component-wise and (1X , 1Y ) is the
identity on the object X × Y .

Despite the complexity of some of these categories, the de�nition of a category
requires only a little structure. In fact our de�nition fundamentally says that a
category can be described by some collection of points and arrows between them.
This means that unlike most of our examples we do not actually need a set
structure for our objects at all. An easy example of a category where we can do
this is the poset on the natural numbers.

Example 1.1.5. A poset will always form a category. Take objects as the el-
ements of the poset category. The morphisms of this category exist uniquely
between objects x → y exactly when x ≥ y. Re�exivity of ≥ guarantees the
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existence of the identity morphisms and transitivity gives us the correct compo-
sition. The class of natural numbers as objects together with the ≤ relation form
a category. We can describe this category with the following graph,

1 32 4 · · ·

Figure 1.1: Graph of the poset category on N.

When describing a category like this the identity morphism will be implicit
and we will not draw the loops. Similarly if composition of morphisms commute as
in the case for a poset we will often not add these morphisms explicitly. Instead,
they are implied by the composition of the morphisms we have described. To
simplify the graph of Figure 1.1 in this way would give us the graph in Figure
1.2.

1 32 4 · · ·

Figure 1.2: Simpli�ed graph of poset category on N.

Example 1.1.6. Posets do not necessarily have to be totally ordered. For ex-
ample, Figure 1.3 describes a valid poset and so is a valid category.

Figure 1.3: Some arbitrary poset category.

Remark 1.1.7. A poset as a category is not the same as the category Poset of
partially ordered sets and order preserving morphisms.

Example 1.1.8. We can use this idea of using graphs to generate categories to
de�ne arbitrary. The graphs given by a category are called quivers . A simple
collection of categories are the discrete categories . These are categories whose
only morphisms are the identity morphisms. Finite discrete categories can be
represented as a graph of n nodes with no edges.

· · ·

Figure 1.4: Finite discrete category.
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For a category C we also de�ne the opposite category Cop. This is the
category de�ned as having the same objects as C and but the morphisms of
Cop are those of C but with the domain and co-domain swapped. The category
Cop retains the same identity morphisms and the compositions are well de�ned
because they are well de�ned in C. For example, the opposite category for the
poset described in Figure 1.1 is de�ned by morphisms existing from x to y when
x ≤ y. For the quiver of a category we can simply reverse the directions of the
vertices to represent the opposite category.

Figure 1.5: Opposite category of Figure 1.3.

In addition to the discrete and poset categories, there are other useful and
interesting abstract categories.

Example 1.1.9.

1. A group G de�nes a single object category denoted BG where the mor-
phisms are elements of G and their composition is multiplication. Each of
these group elements are morphisms from the group to itself.

2. For a unital ring, the category denoted MatR has strictly positive integers
for its objects. The morphisms m → n are n × m matrices over R with
composition de�ned by left multiplication.

3. The class of topological spaces can give rise to the homotopy category as
well as the category of topologies mentioned earlier. In this category the
morphisms are the homotopy classes of continuous maps with the direction
of the morphisms in the same direction as said maps.

1.2 Types of Morphism

In the case of the categories, like Set, in Example 1.1.2 we have some of notion
of isomorphism where two objects are considered the same by the existence of
an invertible morphism between them. For example for groups and rings, if a
homomorphism is bijective and the inverse is a homomorphism then we call the
homomorphism an isomorphism and our two objects are isomorphic. We can
easily generalise this notion to any category.

De�nition 1.2.1. An isomorphism f : X → Y in a category is a morphism
such that there exists a morphism g : Y → X where the compositions fg = 1Y
and gf = 1X . If an isomorphism exists between two objects X and Y then we
say that X and Y are isomorphic. In this case we write X ∼= Y .
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Much like how we can show the inverse of a group element is unique, the
inverse of an isomorphism is unique.

Lemma 1.2.2. Every isomorphism in a category has a unique inverse.

Proof. Let f : X → Y be an isomorphism with inverses g : Y → X and h : Y →
X. By de�nition fg = fh = 1Y and so hfg = hfh which implies 1Xg = 1Xh and
in turn g = h. Hence, the inverse of f is unique. We denote this unique inverse
as f−1.

De�nition 1.2.3. A morphism from an object to itself is an endomorphism

and if this is also an isomorphism we call it an automorphism .

For some more examples of isomorphisms:

Example 1.2.4.

1. The isomorphisms of sets are the bijections.

2. The isomorphisms of topologies are the homeomorphisms.

3. The identity morphism of a category is always an automorphism.

4. All morphisms in the category BG are automorphisms. To prove this, notice
that the identity element of G is the identity morphism of BG, and that
every element of G has an inverse.

5. In the homotopy category (of topological spaces and the homotopy classes
of continuous maps) the isomorphisms are the homotopy equivalences.

So we have a general notion of isomorphisms in our categories. We might ask
if we are also able to generalise the concepts of injective and surjective functions.
We can write a necessary and su�cient property for a function on sets to be
surjective.

A function f : X → Y is surjective if and only if for all maps g, h : Y → Z
such that gf = hf , we have g = h. This is because for gf to equal hf then
they must both be the same on the image of f and so are equal whenever f
is surjective. We will show the other direction by showing the contrapositive.
That is, if f : X → Y is not a surjection, then there exists distinct functions
g, h : Y → Z such that gf = hf . Take a point y ∈ Y which is not in the image
of f . Let g : Y → {0, 1} de�ne the function which sends y to 1 and every other
point to 0. Let h : Y → {0, 1} de�ne the constant map which is 0 everywhere.
Clearly we have gf = hf = 0 for all x ∈ X but g ̸= h.

We have a similar property for injective functions. A function f : X → Y is
injective if and only if for all maps g, h : Z → X such that fg = fh, we have
g = h. If f is injective then we can only have fg = fh when g = h because f has
a unique inverse on every element of its image. Conversely, if f is not injective
then there exists distinct points x and x′ in X such that f(x) = f(x′). In this
case we can have g(z) = x and h(z) = x′ while still allowing fg = fh.

We take this property of surjective and injective functions on sets to de�ne a
new type of morphism in general categories which act like surjective and injective
functions.
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De�nition 1.2.5. An epimorphism is a morphism f : X → Y such that for
every pair of morphisms g : Y → Z and h : Y → Z, if gf = hf then g = h. This
is a categorical analogue of surjectivity. We say a morphism is epic if it is an
epimorphism.

De�nition 1.2.6. An monomorphism is a morphism f : X → Y such that for
every pair of morphisms g : Z → X and h : Z → X, if fg = fh then g = h. This
is a categorical analogue of injectivity. We say a morphism is monic if it is an
monomorphism.

Notice that in the opposite of a category these properties of a morphism are
reversed; i.e. if f : X → Y ∈ C if an epimorphism then f op : Y → X ∈ Cop is a
monomorphism and similarly if f is monic then f op is monic is an epimorphism.

Since epic and monic are categorical analogues of surjective and injective,
it might be natural to ask how this relates to isomorphisms. Certainly in the
category of sets a morphism is isomorphic if and only if it is monic and epic.

Lemma 1.2.7. Every isomorphism is both monic and epic.

Proof. Let f : X → Y be an isomorphism so that there exists f−1 such that
ff−1 = 1Y and f−1f = 1X . If fg = fh for some pair of morphisms g : Z → X
and h : Z → X then fg = fh implies f−1fg = f−1fh and so simplifying gives us
g = h. Similarly but with right composition if g, h are morphisms Y → Z then
gf = hf implies g = h and so f is both monic and epic.

Perhaps surprisingly, the reverse is not true.

Example 1.2.8. A simple example of a epic monic morphism which is not an
isomorphism is in the category in Figure 1.6.

X Y

f

Figure 1.6: A monic epic morphism which is not isomorphic.

The morphism f between the two objects is monic and epic because the only
functions Y → Z and W → X for some W,Z are the identity morphisms where
we take W = X and Z = Y . Now our condition for monomorphisms and epimor-
phisms hold trivially. However, since there is no morphism Y → X then there
cannot be an inverse to f and so it is not an isomorphism.

Example 1.2.9. For a more natural example of a monic epic morphism which is
not an isomorphism consider the inclusion morphism i : Z → Q in the category
of rings. Since i is not surjective it cannot be a ring isomorphism, in fact there
are no ring morphisms Q → Z. To show that i is monic and epic consider the
following proof.

Proof. For any ring R, let f and g be homomorphisms R → Z such that if = ig
then for x ∈ Z we see f(x) = i(f(x)) = i(g(x)) = g(x) as i is just the inclusion
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and hence i is monic. To see that i is epic let f, g : Q → R for some ring R. Since
f, g are ring homomorphisms and f(n) = g(n) for integer n then:

f

(
1

n

)
= f

(
1

n

)(
g(n)g

(
1

n

))
=

(
f

(
1

n

)
g(n)

)
g

(
1

n

)
=

(
f

(
1

n

)
f(n)

)
g

(
1

n

)
= 1Rg

(
1

n

)
= g

(
1

n

)
Hence,

g
(m
n

)
= g(m)g

(
1

n

)
= f(m)f

(
1

n

)
= f

(m
n

)
for every m

n
∈ Q and so i is indeed epic.
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Chapter 2

Functors

2.1 De�ning a Functor

As with lots of mathematics, categories become most useful when we start to
describe relations between them. To do this we can de�ne a map of categories.

De�nition 2.1.1. A functor F : C → D of categories is a map ob(C) → ob(D)
and a map hom(C) → hom(D) such that:

1. The domain and codomain of a morphism f : X → Y ∈ C after applying
F are F (X) and F (Y ) respectively.

2. For every pair of morphisms f : X → Y and g : Y → Z in C then
F (gf) = F (g)F (f).

3. F preserves identity morphisms. That is for an object X ∈ C we have
F (1X) = 1F (X).

We can consider some examples of functors.

Example 2.1.2. 1. For categories C,D and object X ∈ D, he constant func-
tor FX : C → D sends every object in C to X and every morphism in C to
idX ∈ D.

2. The functor sending a set to the free group on its elements is a functor
Set→ Grp.

3. For two groups G,H then a functor F : BG → BH is precisely a group
homomorphism G → H.

4. The fundamental group π1 of a based topological space is a functor Top∗ →
Grp.

5. The identity functor F : C → C sends each object and morphism to them-
selves. A functor from a category to itself is an endofunctor .

6. Another endofunctor is the power set functor F from the category of sets
to itself such that each object X is sent to its power set P(X) and each
morphism f : X → Y to the morphism F (f) : P(X) → P(Y ) which sends
U ∈ P(X) to its image f(X) ∈ P(Y ).
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7. Any functor F : C → D induces the opposite functor F op : Cop → Dop

which acts the same on the objects and morphisms of Cop as F does on C.

8. For group G and category C, if • is the object of BG, then a functor
F : BG → C de�nes the left action of G on the object F (•) ∈ C by where
F sends the group elements g ∈ hom(BG). If C is the category of sets then
F decides how each element of g acts as an endomorphism of the set F (•).
This endomorphism de�nes a left action on F (•) because the morphism
composition is a left composition. When endowed with such an action F (•)
is called a G-set . If C is the category of vector spaces then F (•) with its
action is a G-representation .

A large class of functors are the forgetful functors . These are functors
which "forget" some of the properties or structure of the domain category.

Example 2.1.3.

1. The easiest type of forgetful functors are those on categories with set struc-
ture. A forgetful functor then forgets all properties except for the set struc-
ture. For example, there is a forgetful functor Grp → Set which sends
each group to its underlying sets.

2. Another example of this type of functor is that from the category of topolo-
gies to the category of sets by taking each topological space to its underlying
set.

3. Using a similar idea we have the forgetful functor from rings to the category
of abelian groups which sends a ring to its additive group.

4. The inclusion functor from abelian groups to the category of all groups.

5. The functor from Lie groups to the category of di�erentiable manifold which
"forgets" the group action and sends Lie group homomorphisms to their
corresponding di�erentiable function is a forgetful functor. Similarly we
can take a functor from Lie groups to the category of groups, forgetting the
manifold structure.

At this point we already have su�cient tools to start showing interesting
results which do not directly relate to category theory. The one I shall show now
now is known as Brouwer's �xed-point theorem. This theorem may be familiar to
the reader when described as in terms of the following real world analogue. If you
place a piece of (possibly) crumpled paper on top of another identical piece then
there is at least one coordinate on the crumpled paper which is directly above
the same coordinate on the other sheet.

Theorem 2.1.4 (Brouwer Fixed Point Theorem). Every continuous function
from a closed disk to itself has a �xed point.
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Proof. Assume for contradiction that a map f : D2 → D2 exists without �xed
points. If such an f exists then there also exists a retraction rf : D2 → S1 to the
circle, we de�ne this by taking, for every point x ∈ D2 \S1, a line from x through
f(x) and de�ning rf (x) as the point where this line intersects the circle.

This is now where our category theory is useful. As mentioned in Example
2.1.2, there exists a functor π1 from the category of based topological spaces to
the category of groups by taking the fundamental group of the space. Take a
base point on the boundary of the disk. By the de�nition of the retraction then
the inclusion map i : S1 → D2 composed with r is the identity ri = idS1 on the
circle. Since π1(D

2) = {0} then π1(r) : π1(D
2) → π1(S

1) must have an image of
{0} and so π1(r)π1(i) must be the 0 function. We know that the fundamental
group π1(S

1) = Z and so using the de�nition of a functor we know π1 must satisfy
π1(r)π1(i) = π1(ri) = π1(idS1) = idπ1(S1) = idZ and since idZ(1) = 1 ̸= 0 then we
have a contradiction. Hence, the retraction cannot exist and so neither can our
continuous endomorphism.

Now, to continue our discussion of functors, a collection of functors relevant
to our discussion are the following:

De�nition 2.1.5. A contravariant functor from category C to D is a functor
F : Cop → D. Explicitly this is di�erent from a regular functor in that instead
of axiom (1) we have:

1. The domain and codomain for a morphism f : X → Y ∈ C after applying
F are F (Y ) and F (X) respectively. That is F (f) is a morphism F (Y ) →
F (X).

Due to this change we must also reverse the order of composition. That is, instead
of axiom (2) we have:

2. For every pair of morphisms f : X → Y and g : Y → X ∈ C then
F (gf) = F (f)F (g).

We call a `regular' functor covariant so as to not confuse them with con-
travariant functors. As with covariant functors there are plenty of natural exam-
ples of contravariant functors.

Example 2.1.6.

1. On the category of real vector spaces the map which sends every vector
space to its dual and every linear map to its transpose is a contravariant
endofunctor.

2. The functor F : Setop → Set which sends a set to its power set and a
morphism f : X → Y to its inverse f−1 : P(Y ) → P(X).

3. A contravariant functor C → Cop which is the identity on the objects of C
is just the identity functor Cop → Cop.
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4. Where the covariant functor BG → Set de�nes the left action, the functor
F : BGop → Set de�nes a right action and F is a contravariant functor
on BG.

5. A particularly important class of functors are presheaves . A presheaf is
a contravariant functor F : C → Set. Often we take C to be the poset
category of open sets in a topological space. We will discuss presheaves in
more detail later.

It is worth noting that a contravariant functor F : C → D is just a covariant
functor F : Cop → D. We will describe `a contravariant functor C → D' as `a
functor F : Cop → D' to avoid confusion in line with modern literature.

2.2 Category Size and Fully Faithful Functors

It is natural to ask that if we have functors between categories then surely this
would allow all categories to themselves form a category. Strictly the answer is
no for the same reason we cannot have a set of sets [2]. This is why in De�nition
1.1.1 we describe a �class� of objects and a �class� of morphisms as opposed to
sets. There are however several methods category theorists use to deal with this
problem as described in [8]. An example is Bernays-Gödel set theory which lets
us de�ne classes of objects which are larger than sets. In general this is not
something that should be of concern for our purposes but a useful notion to help
avoid these issues is the following.

De�nition 2.2.1. A category C is small if hom(C) contains only a set's worth
of elements.

There's an obvious map hom(C) → ob(C) which takes a morphism to its
domain. Notably idX 7→ X under this map so this is a surjection and hence a
small category will contain only a set's worth of objects. By limiting the size of
a category we there are no issues, for example, in de�ning the category of small
categories where the morphisms are functors.

We can also consider size of the class of a morphism between two objects of a
category.

De�nition 2.2.2. A category is locally small if between every pair of objects
there is only a set's worth of morphism in which case we write hom(X, Y ) to
denote the set of morphisms between X and Y . Such a set is called a hom set .

By introducing locally small categories we can give an important example of
both a covariant and contravariant functor.

Example 2.2.3. Let C be a category. De�ne a functor hom(X,−) : C → Set,
which takes an object Y ∈ C to the set of morphisms hom(X, Y ) and takes
each morphism f : Y → Z to the morphism denoted f∗ := hom(X, f) de�ned
on an element g ∈ hom(X, Y ) as the left composition f∗(g) = f ◦ g : X → Z.
Similarly, de�ne the functor hom(−, X) : Cop → Set by sending an object Y ∈ C
to the set of morphisms hom(Y,X) and takes each morphism f : Z → Y to the
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morphism f ∗ := hom(f,X) de�ned on g ∈ hom(Y,X) as the right composition
f ∗(g) = g ◦ f : Z → X. We call these functors hom functors .

Now we have some ways to describe properties of categories, let us see how
functors behave. An important property of functors is given by the following
lemma.

Lemma 2.2.4. Functors preserve isomorphisms.

Proof. Let F : C → D be our functor. If f : X → Y ∈ C is an isomorphism
then,

F (f)F (f−1) = F (ff−1) = F (idY ) = idF (Y )

and the similarly F (f−1)F (f) = idF (X).

Unfortunately functors do not preserve monomorphisms or epimorphisms.

Example 2.2.5. The forgetful functor F : Ring → Set does not preserve epi-
morphisms. The inclusion ι : Z → Q is epic as mentioned previously but F (ι)
is not because the inclusion Z → Q as sets is not surjective. By symmetry the
same corresponding morphism in Ringop is monic but this is not preserved by
the functor F op.

To make matters worse, while X ∼= Y =⇒ F (X) ∼= F (Y ) the converse is not
true in general. For that we need a new descriptor of functors.

De�nition 2.2.6. Let F : C → D be a functor where C and D are locally
small categories. The functor F is said to be full if for all objects X, Y ∈ C
the function hom(X, Y ) → hom(F (X), F (Y )) induced by F is surjective. If the
function induced by F is injective then F is faithful . If it is bijective, then F is
said to be fully faithful .

This condition allows for the following lemma.

Lemma 2.2.7. If F : C → D is a fully faithful functor and X, Y are objects in
C then F (X) is isomorphic to F (Y ) if and only if X ∼= Y .

Proof. As has been show, the backwards direction is true of all functors. It
remains to see the converse is true for fully faithful functors. Let F : C → D be
fully faithful and F (X) ∼= F (Y ) be isomorphic in D. Since FX,Y : hom(X, Y ) →
hom(F (X), F (Y )) is bijective in particular it is surjective and there exists and
f ∈ C such that F (f) : F (X) → F (Y ) is an isomorphism. Since F is full, there
exists g ∈ C is such that F (g) = F (f)−1. It remains to show that g = f−1. Since
F (f) is a morphism F (X) → F (Y ) and g is a morphism F (Y ) → F (X) then
by the de�nition of a functor we know the domains and codomains, f : X → Y ,
g : Y → X and in particular fg, gf are both well de�ned. Notice then that
F (fg) = F (f)F (g) = idF (Y ) but since F is faithful there is only one morphism h
such that F (h) = idF (Y ) and since the identity idY must satisfy this property we
have fg = h = idY . Similarly gf = idX and so g = f−1 as required.

16



Chapter 3

Natural Transformations

3.1 De�ning a Natural Transformation

So we have functors as a tool to map between categories. Natural transformations
take this a step further as a map between functors themselves.

De�nition 3.1.1. Let F,G : C → D be functors. A natural transformation

η : F → G is a collection of morphisms of D denoted ηX for each object X ∈ C
such that for every morphism f : X → Y the following diagram commutes.

F (X) G(X)

G(Y )F (Y )
ηY

ηX

G(f)F (f)

That is, for all X, Y and morphism f : X → Y we have ηY F (f) = G(f)ηX .
We call the morphisms ηX the components of η and if every component of η is
an isomorphism of D then we say η is a natural isomorphism and F ∼= G.

As with the case of functors and categories before that, the role of natural
transformations is best illustrated with some examples.

Example 3.1.2.

1. Take a �xed n ∈ N and consider the functor GLn : CRing → Grp which
sends R to n × n matrices over R and a morphism f in CRing to the
morphism f on each element of a matrix in GLn. Let G : CRing → Grp

be a functor which sends a ring to its group of units R×. The determinant
is a natural transformation GLn → G. The determinant will always send a
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member of GLn to R× because if A ∈ R then det(A)−1 = det(A−1) and by
de�nition A−1 ∈ GL(R). Because the determinant is a polynomial de�ned
the same for each matrix and R is commutative then det commutes with f
and GLn(f) as required.

2. A simpler example takes GLn : CRing → Grp, de�ned as above, to the
forgetful functor, F : CRing → Grp. De�ne the natural transformation
as to take the top left entry of GLn(R) to the same element of its ring.

3. We saw in Example 2.1.6 that the dual of a vector space is a contravariant
endofunctor. This means the double dual is a covariant endofunctor. For
each vector space V there is a injective morphism ηV which sends v ∈ V 7→
v ∈ V ∗∗ and these form a natural transformation because they are each
injective so the diagram commutes. In fact when the dimension of V is
�nite this is a natural isomorphism because V ∼= V ∗∗ when dim(V ) < ∞.

4. There is a natural transformation η from the identity functor on sets to the
covariant power set functor P which sends a set to its power set. For set
X then ηX sends x ∈ X to {x} ∈ P(X). For f : X → Y we clearly have
ηY f = P (f)ηX and so this collection gives a natural transformation.

5. For a group G the commutator subgroup denoted [G,G] is the normal
subgroup generated by elements of the form g−1h−1gh. This allows the
abelianization G → Gab of a group by sending G to the quotient group
G/[G,G]. Abelianization is a functor A : Grp→ Ab which sends a homo-
morphism to its corresponding morphism on Gab. The collection of projec-
tions πG : G → Gab from a group G to its cosets are the components of a
natural transformation π : idGrp → A. The diagram,

G Gab

HabH
πH

πG

A(f)f

commutes because f([G,G]) ⊆ [H,H] as f(g−1h−1gh) = f(g)−1f(h)−1f(g)f(h)
and so this natural transformation is well de�ned.

We can see that natural transformations act as morphisms between functors.
As with any good morphism, we have isomorphisms which de�ne the isomor-
phisms of categories.

Example 3.1.3.

1. The identity natural transformation whose morphisms are idX : F (X) →
F (X) is a natural isomorphism.
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2. If G is a group let Gop be the opposite group de�ned as reversing the side of
group multiplication or more formally as the group which gives the category
(BG)op. This process de�nes a functor (−)op : Grp → Grp which sends
a homomorphism ϕ : G → H to ϕop which is de�ned as ϕop(g) = ϕ(g).
We can see that (−)op is naturally isomorphic to the identity by taking the
components ηG : G → Gop to send g ∈ G to g−1. The diagram commutes
because ϕop(ηG(g)) = ϕop(g−1) = ϕ(g−1) = ϕ(g)−1 = ηH(ϕ(g)).

3. Let C,O : Topop → Poset be functors into the category of posets where C
and O send a topology to its collection of closed or open sets respectively.
In both cases C,O send a continuous map f : X → Y to the function
f−1 : C(Y ) → C(X) or f−1 : O(Y ) → O(X) which sends a closed or open
set U ∈ Y to f−1(U) which is closed or open respectively by continuity. C
and O are naturally isomorphic by the transformation η whose components
ηX send an open (or closed set) to its complement which is closed (or open).

3.2 Category Equivalence

Functors act as morphisms on a category of categories. In particular this means
it makes sense to speak of isomorphisms of categories. Isomorphism of categories
is a very strong condition, and in practise categories can have similar structures
without being isomorphic. For these we have the following notion.

De�nition 3.2.1. Two categories C,D are equivalent or naturally equiva-

lent , denoted C ≃ D, if there exist functors F : C → D and G : D → C such
that FG ∼= idD and GF ∼= idC . That is to say there exists natural isomorphisms
between the functor compositions and the identity functor on each category.

This de�nition can be compared to that of homotopy equivalence. In both
cases we say that two objects are equivalent if their morphisms are equivalent to
the identity. Also, similarly to how homeomorphic implies homotopy equivalence,
an isomorphism of categories implies equivalence.

Lemma 3.2.2. Let C and D be categories. Then C ∼= D implies C ≃ D

Proof. If C ∼= D then there exists functors F : C → D and F−1 : D → C such
that FF−1 = idD and F−1F = idC . Since the identity is naturally isomorphic to
itself we see that F and F−1 de�ne a natural equivalence.

Of course we also need to show that natural equivalence is indeed an equiva-
lence relation for this to be well de�ned.

Lemma 3.2.3. Natural equivalence of categories is an equivalence relation.

Proof. For every category C we clearly have C ≃ C because C ∼= C by the identity
transformation. If C ≃ D by functors F : C → D and G : D → C, then by
symmetry functors G : D → C and F : C → D imply D ≃ C. Finally if C ≃ D
and D ≃ E then we have the data FC : C → D, GC : D → C, FD : D → E and
GD : E → D such that FCGC

∼= idD, GCFC
∼= idC and FDGD

∼= idE, GDFD
∼=
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idD. Now notice that FDFC : C → E and GCGD : E → C de�ne a natural
equivalence because FDFCGCGD

∼= FDidDGD = FDGD
∼= idE and similarly

GCGDFDFC
∼= idC .

Checking equivalence requires the construction of two functors and two natural
isomorphisms and this is not always trivial. An easier equivalent condition exists
but �rst we need a quick de�nition.

De�nition 3.2.4. A functor F : C → D is essentially surjective if for every
object Y ∈ D there exists an object F (X) in the image of F isomorphic to D.

This becomes part of the following criteria for equivalence.

Theorem 3.2.5. A functor F de�nes a natural equivalence if and only if F is
fully faithful and essentially surjective.

Proof. Let F : C → D and G : D → C de�ne an equivalence of categories.
Furthermore let η : FG → idD and µ : GF → idC be the natural isomorphisms
which gives us FG ∼= idD and GF ∼= idC respectively. If X is an object in D then
ηX is an isomorphism FG(X) to X. Hence, for any object X, G(X) is an object
in C such that F (G(X)) ∼= X and so F is essentially surjective.

To show F is faithful assume f, g : X → Y are morphisms in C such that
GF (f) = GF (g) then the following diagram commutes.

GF (X) idC(X)

idC(Y )GF (Y )

µY

µX

f or gGF (f)

µ−1
Y

µ−1
X

Hence, µ−1
Y fµX = µ−1

Y gµX . Since µX and µY are bijections, they have inverses
and we can cancel these terms to get f = g. Therefore, GF is injective and so
F is injective on the morphisms between X and Y because if F (f) = F (g) then
G(F (f)) = G(F (g)). By a similar argument on FG we see that in fact both F
and G are faithful.

Finally to see F is a full functor let F (X) and F (Y ) be in the image of objects
of F . Let g : F (X) → F (Y ) be a morphism in D. We are required to show there
exists f such that F (f) = g. If such an f exists then because F and G are natural
equivalences, the following diagram must commute.
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GF (X) idC(X)

idC(Y )GF (Y )

µY

µX

f
G(g)

(= GF (f))

µ−1
Y

µ−1
X

Hence, we know that f , if it exists, must be equal to µYG(g)µ−1
X . De�ne

f := µYG(g)µ−1
X then we must have G(g) = GF (f ′) but since G is faithful then

it is injective on g and g = F (f). Hence we have shown that F is full.
Now for the converse. Let F : C → D be a fully faithful and essentially

surjective functor. We are required to de�ne a functor G : D → C and natural
isomorphisms η : FG → idD and µ : GF → idC . Since isomorphism de�nes
an equivalence relation then we can consider equivalence classes of D de�ned
by isomorphism. Since F is essentially surjective, we can consider the collection
of isomorphism classes and choose from each a representative object of C such
that its image under F is an element of the isomorphism class. Let the function
R : ob(D) → ob(C) send an object Z ∈ D to such a choice of representative in C
whose image is in its isomorphism class. By this de�nition objects Z ∼= W ∈ D if
and only if R(Z) = R(W ) and Z ∼= W ∼= F (R(Z)). We de�ne G on an object Z
of D as G(Z) = R(Z). If X is an object of C then because F is fully faithful and
because F (R(F (X)) = F (X), by Lemma 2.2.7 we have that R(F (X)) ∼= F (X).
For each X in C choose an isomorphism µX from R(F (X)) to X and let µ be
the collection of such isomorphisms. Finally for each X ∈ C then we've seen
RF (X) = GF (X) ∼= X so all that remains for µ to be a natural isomorphism is
to de�ne GF (f) such that the following diagram commutes.

GF (X) idC(X)

idC(Y )GF (Y )

µY

µX

fGF (f)

µ−1
Y

µ−1
X

Since F is fully faithful we have that the map FXY : hom(X, Y ) → hom(F (X), F (Y ))

21



induced by F is a bijection. Hence, we de�ne G on F (f) such that G(F (f)) =
µ−1
Y fµX . In particular, for each object Z ∈ D then F (R(Z)) is Z's isomorphism

class representative so choose rZ : Z → F (R(Z)) be an isomorphism de�ning it
as such. Now for every g : Z → W ∈ D we have G(g) = µ−1

R(W )F
−1
R(Z)R(W )(rW ◦

g ◦ r−1
Z )µR(Z). By this de�nition our diagram commutes and µ is a well de�ned

natural isomorphism GF ∼= idC .
It remains to show that G is a well de�ned functor and also that there exists

a natural isomorphism η : FG → idD. First lets show G is well de�ned. If
g : Z → W is a morphism in D then G(f) = µ−1

R(W )F
−1
R(Z)R(W )(rW ◦ g ◦ r−1

Z )µR(Z)

is a morphism R(Z) → R(W ) and by de�nition of G we have G(Z) = R(Z) and
G(W ) = R(W ) as required.

Composition is well de�ned because for morphisms f : V → W and g : W →
Z in D we have,

G(g)G(f) = µ−1
R(Z)F

−1
R(W )R(Z)(rZ ◦ g ◦ r−1

W )µR(W )µ
−1
R(W )F

−1
R(V )R(W )(rW ◦ f ◦ r−1

V )µR(V )

= µ−1
R(Z)F

−1
R(W )R(Z)(rZ ◦ g ◦ r−1

W )F−1
R(V )R(W )(rW ◦ f ◦ r−1

V )µR(V )

= µ−1
R(Z)F

−1
R(V )R(Z)(rZ ◦ g ◦ r−1

W rW ◦ f ◦ r−1
V )µR(V )

= µ−1
R(Z)F

−1
R(V )R(Z)(rZ ◦ (gf) ◦ rV )µR(V )

= G(gf).

To show G preserves identity morphisms take an object Z ∈ D and we have
G(idZ) = µ−1

R(Z)F
−1
R(Z)R(Z)(rZ ◦ idZ ◦ r−1

Z ))µR(Z) = µ−1
R(Z)F

−1
R(Z)R(Z)(idF (R(Z)))µR(Z) =

µ−1
R(Z)idR(Z)µR(Z) = idR(Z) = idG(Z) as required.
Finally it remains to construct an natural isomorphism η : FG ∼= idD. By

our de�nitions FG(Z) = R(Z) so we need to de�ne η such that for all g ∈ D the
following diagram commutes.

FG(Z) idD(R(Z))

idD(R(Z))FG(W )

ηR(W )

ηR(Z)

gFG(g)

η−1
R(W )

η−1
R(Z)

SinceG(g) = µ−1
R(W )F

−1
R(Z)R(W )(r(W )◦g◦r−1

Z )µR(Z) then FG(g) = F (µ−1
R(W ))(rW◦

g ◦ r−1
Z )F (µR(Z)) (notice F (µR(Z)) is well de�ned because µR(Z) is an endomor-

phism) and so commutativity is equivalent to �nding η such that η−1
R(W )gηR(Z) =

F (µ−1
R(W ))(rW ◦ g ◦ r−1

Z )F (µR(Z)). If we de�ne ηR(V ) for an object V to be equal
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to r−1
V F (µR(V )) then, because η−1

R(W ) = F (µR(W ))
−1(r−1

V )−1 = F (µ−1
R(W ))rV this

de�nition allows our diagram to commute. Hence, η is a natural transformation.
η−1 is a natural transformation similarly and hence η is a natural isomorphism
and so F is a natural equivalence as required.

It is clear that if two categories are isomorphic then they are naturally equiv-
alent (if a functor F : C → D is an isomorphism then FF−1idD, F−1F = idC
so the identity natural transformation gives equivalence). It is clear that the
converse is not true in general. However, natural equivalence can be thought of
category isomorphism up to isomorphism of its objects. We can use the previous
lemma to formalise this.

Lemma 3.2.6. Let C,D be categories in which two objects are isomorphic if and
only if they equal. Then C and D are isomorphic as categories if and only if they
are naturally equivalent.

Proof. We have already seen that category isomorphism implies equivalence in
general. To see the converse let F : C → D and G : D → C de�ne an equivalence
of categories with the equivalence giving rise to the natural isomorphism η :
GF → idC . Firstly, if X is an object in C then ηX(GF (X)) = X but since ηX is
an isomorphism then GF (X) = X by the de�nition of C. Since G gives a unique
inverse of F on objects then F is a bijection on the objects.

Finally, since F is an equivalence of categories then F is fully faithful by Theo-
rem 3.2.5 and therefore, bijective on morphisms of C. Hence, F is an isomorphism
of categories.

In fact every category is naturally equivalent to a category with no isomor-
phisms [6]. Identifying isomorphic objects of a category is called taking the
skeleton of a category. Hence, natural equivalence can be thought of as an
isomorphism of skeletons.

Now we have some understanding of category equivalence lets look at some
examples.

Example 3.2.7.

1. Let F : MatR → VecR be a functor which sends n to Rn and a morphism
M ∈MatR to its corresponding linear map T : x 7→ Mx. Then F de�nes an
equivalence of categories. Certainly F is a functor of categories. To see that
it de�nes an equivalence we check that F is both fully faithful and essentially
surjective. To see that functor F is full, recall that if T : Rn → Rm is a
linear transformation then there is a matrix M whose columns are given
by T on each member of an ordered basis of Rn. The functor F is faithful
because if two matrices M and M ′ act the same on a basis then they must
have the same matrix entries. Finally notice that F is essentially surjective
because all objects in VecR are �nite and integer dimensional.

MatR ≃ VecR by the functor F : MatR ≃ VecR which sends n to Rn

and a morphism M ∈MatR to its corresponding linear map which sends a
vector x to Mx.
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2. De�ne 1 as the category with one object and only the identity morphism.
Let C be a category where ob(C) = {1, 2} and the only morphisms are the
identities and isomorphisms 1 → 2 and 2 → 1. By Theorem 3.2.5 1 and C
are equivalent categories because any functor 1 → C is fully faithful and
essentially surjective.

3. It is a famous result of Lie theory that the category of simply connected
Lie groups and the category of Lie algebras are equivalent as categories by
the functor taking a group to its tangent space at the identity [1].

4. Let C and D be two categories and a functor F : C → D de�ne an equiva-
lence. The functor F op : Cop → Dop is fully faithful and essentially surjec-
tive since F has those properties and so Cop ≃ Dop.

3.2.1 Functor Categories

We have shown that functors have natural transformations between them. Notice
that natural transformations can be composed as in Figure 3.1.

F (X) G(X)

G(Y )F (Y )
ηY

ηX

G(f)F (f)

H(X)

H(Y )
µY

µX

H(f)

Figure 3.1: Composition of natural transformations.

We've also seen in Example 3.1.3 that an identity natural transformation
exists. Clearly composition of natural transformations is associative so natural
transformations could act as the morphisms in a category of functors. This notion
gives us the following de�nition.

De�nition 3.2.8. For categories D and C the functor category DC has objects
as all functors F : C → D and morphisms as natural transformations.

Notice that DC is locally small if and only if C is small. Normal examples of
functor categories are simply categories of some collection of functors. However,
there are some other natural examples.

Example 3.2.9.

1. If C is a discrete category such that the objects are a �nite set of integers 1
to n then DC is the product category Dn. Each functor assigns a number
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of C to an object in D and so each functor can be thought of as indexing
D by C. The natural transformations are then the morphisms of objects
(X1, X2, . . . Xn) to (Y1, Y2, . . . Yn) taken component-wise.

2. For a group G, the category of G-sets (group actions on sets) de�nes the
functor category SetBG.

3. Similarly the category of category of G-representations is a functor category.

4. For a category C then the presheaves F : Cop → Set form the functor
category SetC

op

.

3.3 Representable Functors and the Yoneda Lemma

3.3.1 Representable Functors

We will start with a de�nition.

De�nition 3.3.1. For a locally small category C with object X and functor
F : C → Set then a co-representation (resp. representation) of F is the pair
(X, η) for some natural isomorphism η : hom(X,−) → F (resp. η : hom(−, X) →
F ) from the Hom functor to F . A functor F is co-representable (resp. repre-
sentable) if a co-representation (resp. representation) of F exists.

Some examples of representable functors are as follows.

Example 3.3.2.

1. The identity functor I : Set→ Set is co-represented by ({1}, im) where im
sends an element of f ∈ hom({1}, S) to its image f(1) which clearly de�nes
a bijection hom({1}, S) ∼= S.

2. Most forgetful functors are co-representable. Consider the forgetful functor
F : Grp → Set and the representation (Z, im(1)) where im(1) de�nes a
bijection hom(Z, G) ∼= F (G) by sending an element f of the Hom set to
the element f(1). This is a bijection because Z is the free group generated
by 1 so every homomorphism Z → G is decided by where it sends 1. We Z
to be a free group or the homomorphisms would impose restrictions on the
morphisms between sets. Similarly the forgetful functor Ring→ Set is co-
represented by (Z[x], im(x)) and the functor VecR → Set is co-represented
by (R, im(1)).

3. For a group G then the functor FS : BG → Set which sends the object
• ∈ BG to the set S de�nes the group action ofG on S. Since hom(•, •) ∼= G
as a set then FS is co-representable if |S| = |G| and F de�nes a bijection
G to the automorphisms of S. A choice of natural transformation η :
hom(•,−) → FS amounts to choosing the inverse of the identity e ∈ G.

4. A presheaf is representable if it is isomorphic to hom(−, X).
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5. The functor Top→ Set which maps a topological space to its set of paths
is co-represented by the unit interval I and the identity transformation. We
can see this by noticing that hom(I,X) is exactly the set of paths.

3.3.2 Yoneda Lemma

We are now able to consider what is perhaps the most famous and important
result in all of category theory [7, page 57].

Theorem 3.3.3 (Yoneda Lemma). Let C be a locally small category, F : C →
Set be a functor, X ∈ C be an object, and y(X) = hom(X,−) be a Hom func-
tor. There exists a bijection γFX between the Hom set of natural transforma-
tions hom(y(X), F ) and the set F (X). Furthermore, if there are two functors
F,G : C → Set with natural transformation η between them and f : X → Y is a
morphism in C then both diagrams in Figure 3.2 commutes.

hom(y(X), F )

G(X)

F (X)

hom(y(X), G)

η∗ ηX

γFX

γGX

hom(y(X), F )

F (Y )

F (X)

hom(y(Y ), F )

f ∗∗ F (f)

γFX

γFY

Figure 3.2: Yoneda Lemma commuting diagram.

Put di�erently, collection of γFX 's de�ne a natural isomorphism γF between
hom(y(X),−) : SetC → Set and the functor which evaluates an element of SetC

at X. In addition γFX de�ne a natural isomorphism γF : hom(y(−), F ) → F .

Proof. First lets show there is a bijection γ : hom(hom(X,−), F ) → F (X). For
a natural transformation µ : hom(X,−) → F let γ(µ) := µX(idX) then we are
required to show this has an inverse. I claim that the inverse of γ sends an element
q ∈ F (X) to the natural transformation λ(q) whose component at an object Y
is given by λ(q)Y : f 7→ (F (f))(q). We need to show that λ does indeed de�ne
natural transformations and that λ and γ are inverse. Firstly for some q ∈ F (x)
then λ(q) is a natural transformation if for some morphism f : Y → Z and the
following diagram commutes.
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hom(X, Y ) F (Y )

F (Z)hom(X,Z)
λ(q)Z

λ(q)Y

F (f)f∗

To see this choose a morphism a ∈ hom(X, Y ) and then notice that λ(q)Z(f∗)(a) =
λ(q)Z(f ◦ a) = (F (fa))(q) = (F (f)F (a))(q) = F (f)(F (a)(q)) = F (f)λ(q)Y (a)
and so λ(q) is a well de�ned natural transformation.

To see that λ = γ−1 �rstly λ is right inverse to γ because γ(λ(q)) = λ(q)X(idX) =
(F (idX))(q) = idF (X)(q) = q hence γ ◦ λ = idF (X).

It remains to see λ ◦ γ = idhom(y(X),F ) so let µ : y(X) → F be a natural
transformation and we are required to check λ(γ(µ)) has the same components
as µ so let f ∈ hom(X, Y ). We need to show λ(γ(µ))Y (f) = µY (f).

λ(γ(µ))Y (f) = λ(µX(idX))Y (f) = (F (f))(µX(idX)) = (F (f))(µX))(idX)

Since µ is a natural transformation the following square commutes.

hom(X,X) F (X)

F (Y )hom(X, Y )
µY

µX

F (f)f∗

Figure 3.3: Commutativity of λ(q).

Hence, (F (f))(µX))(idX) = (µY )(f∗)(idX) = (µY )(f ◦ idX) = µY (f) and
λ = γ−1 as required and so γ de�nes a bijection.

It remains to show the naturality condition of the Yoneda Lemma. For the
�rst of the two squares we need to show ηXγFX = γGX(η∗) for some natural
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transformation η : F → G. Let µ be a natural transformation in hom(y(X), F )
then ηXγFX(µ) = ηX(µX(idX)) = (ηXµX)(idX) = γGX(η ◦ µ) = γGX(η∗)(µ) as
required.

For the second of the commutating squares for morphism f : X → Y and
µ, a natural transformation in hom(y(X), F ) then γFY (f

∗∗(µ)) = (µ ◦ f ∗)Y (idY ).
Since µ is a natural transformation then it commutes much like λ(q) in Figure
3.3 and we have (µ ◦ f ∗)Y (idY ) = µY (f) = F (f)µX(idX) = F (f)(γFX(µ)) so we
have naturality as required.

While the Yoneda lemma is a very abstract result, it can be applied to show
powerful theorems. A notable example is the application of the Yoneda lemma
to prove Cayley's theorem.

Theorem 3.3.4 (Cayley). Every group is a subgroup of a symmetric group.

Proof. Applying the Yoneda lemma to the functor y(•) := hom(•,−) we have,

hom(y(•), y(•)) ∼= hom(•, •).

By de�nition hom(•, •) ∼= G and so G ∼= hom(y(•), y(•)). Since there is
only one object in BG a natural transformation η : y(•) → y(•) has only one
component. Since y(•)(•) = hom(•, •) = G then a natural transformation η
is just a set map G → G and hence an element of the symmetric group on
elements of G. In particular the Yoneda lemma tells us that the set of natural
transformations hom(y(•), y(•)) ∼= G and so G is a subgroup of the symmetric
group on the elements of G.
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Chapter 4

Limits and Colimits

4.1 De�ning Limits

When we consider the category of sets then we know that for two sets S and T
then S × T is also an object in Set. This is also true for pairs of groups, rings
and topological spaces in their respective categories. We call this a product and
as with most properties that are shared between categories there is a category
theoretic way to describe the product as well as other constructions. The tools
we have to make this description are limits and co-limits. We will come back to
the example of products later but �rst we need some de�nitions.

De�nition 4.1.1. For a pair of categories C and J then a diagram is a functor
F : J → C with index category J .

A diagram F with index category J is sometimes also called a diagram of
shape J . Here we use J to describe the properties we want for our limit. For
example the product of two elements is given by a discrete index category of two
objects. The diagram describes which objects we choose to take the product of.
Now we need to choose an object in C to be our product and a way to relate our
diagram to this object. We do this through the use of cones .

De�nition 4.1.2. Let F : J → C be a diagram and FX : J → C be the constant
functor whose image is the object X in C. The cone over F is the natural
transformation η : FX → F with apex X. This means for objects i, j ∈ J the
following triangle commutes.

F (i) F (j)

X

F (f)

ηi ηj

The cone also has a dual notion.
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De�nition 4.1.3. Let F : J → C be a diagram and FX : J → C be a constant
functor. The cocone is a natural transformation η : F → FX with nadir X.
That is, a cocone is a cone over F op : Jop → Cop. The naturality condition
requires the following triangle commute.

F (i) F (j)

X

F (f)

ηi ηj

Cones now allow us to properly de�ne a limit.

De�nition 4.1.4. Let F : J → C be a diagram. The limit of F is the apex X of
a cone over F such that for all cones µ : FY → F there exists a unique morphism
Y → X where the following diagram commutes.

F (i) F (j)

X

F (f)

ηi ηj

Y

µjµi
∃!

Figure 4.1: De�nition of a limit.

The limit of a diagram might not necessarily exist if no cones over F exist.
What is more important is that our limit is de�ned uniquely.

Lemma 4.1.5. If a limit exists then it is unique up to isomorphism.

Proof. Let X and Y be limits of a diagram F : J → C with cones de�ned by nat-
ural transformations η and µ respectively then the following diagram commutes.
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F (i) F (j)

X

F (f)

ηi ηj

Y µjµi ∃!

X

ηi ηj∃!

Let g : X → Y and h : Y → X be the unique maps. Because η is a cone with
apex X, by de�nition we have that the following diagram commutes.

F (i) F (j)

X

F (f)

ηi ηj

X

ηjηi
∃!

Certainly idX satis�es the commutativity condition but because the mapX →
X has to be unique then idX = hg. Similarly we see that gh = idY . Hence, g
and h de�ne an isomorphism X ∼= Y .

4.2 Examples and Properties of Limits and Col-
imits

Now we have the tools to de�ne the product.

De�nition 4.2.1. Let 2 be the discrete category where ob(J) = {1, 2}. De�ne
F as the diagram F : 2 → C for some category C. Let X and Y be the objects
of C such that F (1) = X and F (2) = Y . The limit of F is the product X × Y .

Because J is �nite we can draw the cone over all elements in the image of J .
We call this diagram the limit diagram . For the product that diagram is given
by Figure 4.2.
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X YX × Y

πX πY

Figure 4.2: Limit diagram of the product.

For every cone with apex Z, the limit requires the existence of a unique
commuting map from Z into the limit diagram. The existence of this map is
called the universal property . We can describe this property with a diagram
as in Figure 4.3.

X YX × Y

πX πY

Z

µYµX

∃!

Figure 4.3: Universal property of the product.

The morphisms πX and πY de�ne the projection maps from the product to
their respective objects. This notion of the product generalises to nth products
simply by considering a discrete n element index category. We can also take
in�nite products over in�nite indexing categories. The product is the usual set-
wise product for all the normal categories with set structure [5]. It is worth
noting however that on Top this limit de�nes the product topology and not
the box topology. This is because the product topology satis�es the universal
property, but is coarser than the box topology.

Another simple example of a limit is the terminal object T . This is de�ned
as the limit of the diagram from the empty category. Explicitly, T is the object
such that for every object X ∈ C there is exactly one morphism X → T . Some
examples of the terminal object are as follows.

Example 4.2.2.

1. The singleton is the terminal object in Set. Every function into {∗} is
unique and, of course, all singletons are isomorphic.

2. The trivial group is the terminal object in Grp.

3. The terminal object in Ring is the zero ring {0}.

4. In a poset category the terminal object exists if and only if there is some
largest object. For example there is no terminal object in (Z,≤) but -1 is
the terminal object on the negative integers.

5. In Top and Top∗ the one point space is the terminal object.
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6. In the category of small categories the terminal object is the category 1

with one object and only the identity morphism.

7. There are no terminal object in the category of �elds, because there are no
homomorphisms between �elds of di�erent characteristic.

The terminal object is the unique object with exactly one morphism into it.
We might ask if we can de�ne a similar structure which gives an object which
maps out to every object in the category uniquely. We call this the initial object
and it is de�ned through the use of colimits .

De�nition 4.2.3. Let F : J → C be a diagram. The colimit of F is the nadir
X of a cocone of F such that for all cones µ : F → FY there exists a unique
morphism X → Y where the following diagram commutes.

F (i) F (j)

X

F (f)

ηi ηj

Y

µjµi ∃!

Figure 4.4: De�nition of a colimit.

Much like the limit, the colimit (if it exists) is unique up to isomorphism.
The initial object described above is the colimit of a diagram from the empty
category. Some examples are as follows.

Example 4.2.4.

1. The empty set is the initial object in Set as the empty function is unique.

2. The trivial group is the initial object in Grp. This is the same object as
the terminal object. When an object is both initial and terminal we call it
the zero object .

3. The initial object inRing is the ring of integers Z. The only homomorphism
f : Z → R sends n to n · f(1).

4. Similarly to the terminal object, the poset category has an initial object if
and only if there is some least object.

5. In Top the empty set is the initial object.
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6. In Top∗ the singleton is a zero object.

7. In the category of small categories the initial object is the empty category.

8. As for terminal objects, there are no initial objects in the category of �elds,
because there are no homomorphisms between �elds of di�erent character-
istic.

We can also consider the colimit of a diagram over the discrete category, this
de�nes what we call the coproduct . The coproduct is usually not the same as
the product. The universal property of the coproduct is as follows:

X YX ⊕ Y
ιX ιY

Z

µYµX
∃!

The coproducts on some di�erent categories are as follows.

Example 4.2.5.

1. In the category of sets the coproduct is the disjoint union and the cone
de�nes the inclusion maps ι.

2. The coproduct of two groups G and H de�nes the free product . The
group freely generated by elements of G and H. Clearly both G and H are
subgroups of this free product.

3. The free product of two commutative groups is not necessarily commutative
and hence is not the coproduct on abelian groups. The coproduct of two
groups in Ab is the usual element-wise product. In Ab the �nite product
and �nite coproduct are the same.

4. The coproduct in Top is the disjoint union of topologies much like in the
case of the coproduct in Set.

5. The coproduct in Top∗ cannot be the same as in Top because we would
have two base points. The coproduct in based topological spaces is the
disjoint union where the two based points are identi�ed. For example the
coproduct of (S1, 1) with itself is homeomorphic to a �gure in�nite with
base point at the intersection.

Of course there are other indexing categories we can use to de�ne limits. One
of these gives rise to the object we call the kernel.
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De�nition 4.2.6. The equaliser of a category is the limit de�ned over the
indexing category which has two objects and two parallel morphisms. The quiver
of this indexing category is given below.

Let f and g be the image of our the morphisms of our diagram F . The
universal property of the equaliser is,

X Y

f

g
E

A

h

a
∃!

Dually we have the coequaliser which is the colimit of the same indexing
category and this has universal property given by,

YX

f

g
E

A

h

a
∃!

On categories with set structure the equaliser de�nes the object E(f, g) :=
{x ∈ X : f(x) = g(x)}. That is, the sub-object ofX where f and g are equal. The
map h : E → X in the above diagram is the inclusion map. On categories with a
zero object like Grp we can de�ne the kernel of a morphism f as the equaliser
ker(f) where g is the 0 map sending X to the zero object. This de�nes the kernel
because it de�nes the maximal subgroup ofX where f(ker(f)) = g(ker(f)) = {e}.
Dually when g is the 0 map then the coequaliser de�nes the object called the
cokernel . The cokernel describes the quotient group Y/im(f).

The �nal examples of limits we will discuss is that of the pullback and
pushout .

De�nition 4.2.7. The pullback is the limit of a diagram with index category,

The pushout is the colimit of the diagram with the following index category.

Let the image of the morphisms in the index category be f and g then the
universal property of the pullback is given by the following commuting diagram.

35



X Y
P

πX πY

Z

µYµX
∃!

Z
f g

Similarly the universal property of the pushout is given as follows.

X Y
P

ιX ιY

Z

µYµX
∃!

Z
f g

The pullback is also known as the �bre product. When de�ned on sets the
pullback describes the set of elements (x, y) such that f(x) = f(y). Similarly, the
pullback can be de�ned this way on most categories with set structure like Ring
and Grp. In these categories the natural transformation π is the projection. The
pushout varies more over di�erent categories but in Set and Top the pushout is
the disjoint union under the equivalence relation f(z) ∼ g(z).

There are in�nitely many more possible limits depending on our indexing
category. As mentioned already these limits do not necessarily exist so it might
be surprising to �nd that some categories, for example Set, actually contain all
possible (small) limits. The following result allows for a condition which allows
us to show this in general.

Theorem 4.2.8. If a category has all equalisers and small products then it has
all small limits.

Proof. Let J be a small indexing category of the diagram F : J → C. We need
to �nd a cone over F which every other cone factors through uniquely. For a
morphism f : i → j ∈ hom(J) de�ne the map dom(f) = i as the domain of f
and cod(f) = j be the codomain. All the data of this proof is encoded in the
following diagram.
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∏
j∈ob(J)

F (j)
∏

f∈hom(J)

F (cod(f))

F (cod(f))

πf

πcod(f))

F (dom(f)) F (cod(f))

E(τc, τd)

τc

τd

F (f)

X

πdom(f) πf

h

∏
j∈ob(J)

ηj

Figure 4.5: Limit as a product and equaliser.

Because all small products exist in C and J is small then the two products of
the diagram are well de�ned. The maps πf are the projections of the second prod-
uct. We de�ne πcod(f) (respectively πdom(f)) as the projection of the object whose
codomain (resp. domain) is f in the product

∏
X∈ob(J) F (X). We de�ne τc as the

unique map given by the universal property of the product
∏

f∈hom(J) F (cod(f))
and the maps πcod(f). Similarly, de�ne τd as the universal property of the sec-
ond product and the maps F (f) ◦ πdom(f). Finally, let E(τc, τd) and h de�ne the
equaliser of these two maps. I claim E(τc, τd) is the limit of F .

First we must show that E(τc, τd) is the apex of a cone over F . For every
pair objects i and j ∈ J and morphism f : i → j we need to show (πj ◦ h) =
F (f)◦(πi◦h). By de�nition of τd we know the lower square of Figure 4.5 commutes
and so F (f)◦πi = πf ◦τd and similarly for the upper triangle we have πj = πf ◦τc
hence πj ◦ h = (πf ◦ τc) ◦ h = πf ◦ τd ◦ h by the de�nition of the equaliser. Hence
substituting for πf ◦ τd, we have (πj ◦ h) = F (f) ◦ (πi ◦ h) as required and so we
have a cone.

Finally it remains to show that for every cone over F with apex X and natural
transformation η that η factors through E(τc, τd) uniquely. The components of η
form the unique map, ∏

j∈ob(J)

ηj : X →
∏

j∈ob(J)

F (j)

Since η is a cone over F then we know it satis�es τc ◦
∏

η = τd ◦
∏

η. Hence, by
the de�nition of the equaliser we know

∏
η must factor uniquely through h and

so the proof is complete.

Dually we can similarly show that a category has all small colimits if it has
all coequalisers and small coproducts.
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Chapter 5

Sheaves and the Fundamental

Group

5.1 Sheaves

5.1.1 Presheaves

We already have mentioned that a presheaf is any functor F : Cop → Set.
However, it is often most useful to take C as the poset category of open sets on
a topological space.

De�nition 5.1.1. For any topological space X, there exists a category denoted
Op(X) whose objects are the open sets of X. For two opens U, V ⊆ X then there
exists a unique morphism U → V in Op(X) exactly when U ⊆ V .

We say that a functor F : Op(X)op → Set is a presheaf of the space X. For
a morphism f : U → V we will denote F (f) as ρVU : F (V ) → F (U).

De�nition 5.1.2. Let F : Op(X)op → Set be a presheaf. If U ⊆ X is open, the
elements of the set F (U) are called the sections of F over U . The sections of F
over the full space X are called the global sections .

Some examples of presheaves are as follows.

Example 5.1.3.

1. The constant presheaf sends each open U ⊆ X to a set S. We send
all morphisms to the identity, i.e. for every pair of opens U ⊆ V we have
ρVU = idS.

2. Given two topological spacesX, Y then we de�ne the presheafOY
X : Op(X)op →

Set on an open U ⊆ X as the set of continuous maps U → Y . The mor-
phisms ρVU is the restriction from V to U .

3. We can de�ne a presheaf much like OR
X , but instead of continuous functions

we send an open set U to the set of bounded functions U → R.
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4. For a subspace X ⊆ Rn the functor Cr sending an open U ⊂ X to the set
of r-times di�erentiable functions U → R (or C) is a presheaf. The image
is a subset of OR

X(U).

5. For a subspace X ⊆ Cn the functor C∞ sending an open U ⊂ X to the set
of holomorphic functions U → C is a presheaf. The image is a subset of
OC

X(U).

6. For a set S with subset T then there is a presheaf F which sends F (X) = S
and F (U) = T whenever U ̸= X. For U, V ̸= X we have ρVU = idT , ρXX = idS
and ρXU is the inclusion T → S.

7. Similarly let x0 ∈ X be a point, let S be a set, and let s ∈ S be a point.
Then we de�ne the indicator presheaf by F (U) = S if x0 ∈ U and
F (U) = {s} ⊆ S otherwise. For opens U and V which do not contain x0 we
have ρVU = id{s}. If U and V do contain x0 then ρVU = idS if only V contains
x0 then and ρVU is the inclusion {s} → S.

8. A space X with subspace V gives rise to the presheaf represented by V
HV which sends U to the 1 point set {∗} if U ⊆ V and ∅ otherwise. The
maps between these sets are unique and so the image of the morphisms are
decided by HV being a functor.

9. For continuous map p : Y → X of topological spaces then there is a presheaf
Γp : Op(X)op → Set called the presheaf of sections . A section of a
map p : Y → X is a (necessarily continuous) map s : X → Y such that
p ◦ s = idX . We de�ne Γp as the functor which sends an open U ⊆ X to
the set of sections of the map which is p restricted to U .

5.1.2 Sheaves and the Sheaf Condition

In this section we will consider a speci�c type of presheaf called a sheaf . Let
F : Op(X)op → Set be a presheaf. For an open U ⊆ X with open cover U =⋃

λ∈Λ Uλ we can de�ne the map,∏
λ∈Λ

ρUUλ
: F (U) →

∏
λ∈Λ

F (Uλ).

This map gives us the two conditions on presheaves we require. The �rst of
these is as follows

De�nition 5.1.4 (Locality Condition). Let F : Op(X)op → Set be a presheaf.
For every open set U ⊆ X and every open cover

⋃
λ∈Λ Uλ, the map

∏
λ∈Λ ρ

U
Uλ

is
an injection.

We call a presheaf that satis�es the locality condition a monopresheaf or
in some sources a separated presheaf . An important condition imposed by the
locality condition is that any monopresheaf must send the empty set to a 1 point
set. To see this, take the open ∅ with the empty open covering (that is Λ = ∅).
Since Λ = ∅ we trivially have that

∏
λ∈Λ ρ

U
Uλ

is an injection because the product
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is empty but if F (∅) has two or more elements s ̸= s′ then the locality condition
does not hold.

The second condition we can impose on presheaves is as follows.

De�nition 5.1.5 (Gluing Condition). Let F : Op(X)op → Set be a presheaf. For
every open cover

⋃
λ∈Λ Uλ of every open set U ⊆ X, the gluing condition sates

the following. If there exists a collection of sections (sλ ∈ F (Uλ))λ∈Λ which satisfy
ρUα
Uα∩Uβ

(sα) = ρ
Uβ

Uα∩Uβ
(sβ) for all α, β ∈ Λ then there exists a section s ∈ F (U)

such that
∏

λ∈Λ ρ
U
Uλ
(s) =

∏
λ∈Λ(sλ).

The gluing and locality conditions together form what we call the sheaf con-
dition .

De�nition 5.1.6 (Sheaf Condition). A presheaf is a sheaf if it satis�es both
the locality and gluing condition.

Equivalently we can re-state the sheaf condition as saying that our map∏
λ∈Λ ρ

U
Uλ

de�nes the following equaliser [4, pages 65-66].

F (U)
∏

λ∈Λ F (Uλ)
∏

α,β∈Λ F (Uα ∩ Uβ)

∏
λ∈Λ ρ

U
Uλ

πα

πβ

Where πα and πβ are the projections whose αth and βth components are
F (Uα) and F (Uβ) respectively followed by the restriction F (Uα ∩ Uβ).

For some examples of sheaves we will check whether each of the presheaves in
Example 5.1.3 satisfy the sheaf condition (in the same order).

Example 5.1.7.

1. The constant presheaf F into a set S is not a sheaf because F (∅) = S which
is not necessarily a 1 point set. If instead we de�ne the constant presheaf
such that F (∅) = {∗} then F is still not a sheaf.

In our sheaf condition we are given the map
∏

λ∈Λ ρ
U
Uλ
. Since ρVUλ

is the
identity map for all opens, then this product map is the diagonal map
S → S|Λ| by s 7→ (s, s, ..., s). This is clearly injective when Λ ̸= ∅ and so
the constant presheaf is a monopresheaf. However, this presheaf does not
satisfy the gluing condition. We can take an open set U with disjoint open
cover V ⊔ W . For every pair of section v ∈ F (V ) and w ∈ F (W ) with
v ̸= w, then ρVV ∩W (v) = ρWV ∩W (w) because they map into a 1 point set but
clearly there is no s such that (s, s) = (v, w). If and only if S is a 1 point
set is the constant presheaf a proper sheaf.
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2. The presheaf OY
X is a sheaf. The sheaf condition says, that given some

open cover, if continuous functions agree on the overlap of these opens
(the ρUα

Uα∩Uβ
(sα) = ρ

Uβ

Uα∩Uβ
(sβ) condition) then there is a unique continuous

function which glues the continuous functions on the open sets together.
This is why we call De�nition 5.1.5 the gluing condition.

3. Bounded functions do not give rise to sheaves in general. This is because we
cannot glue together bounded functions and guarantee a bounded function.
To make this precise, consider the the bounded functions R → R given by
F (R) then the intervals of the form (n, n + 2) cover R and the function
f(x) = x is bounded on all of these intervals. Furthermore, these functions
are equal on their intersections but f is not bounded on all of R so this fails
the gluing condition.

4. Much like with OY
X , the presheaves of r-times di�erentiable are sheaves.

5. The presheaves of holomorphic functions are sheaves.

6. The indicator presheaf is a sheaf. If U is an open with covering {Uλ}λ∈Λ then
if x0 /∈ U we have ρUUλ

(s) = ρUUλ
(s′) because these maps are both identity.

If instead x0 ∈ U then at least one Uλ in the open covering contains x0.
Hence, our product map sends every section s ∈ F (U) to a tuple with s
is in the λth position and so this map must be injective. To see that this
satis�es the gluing condition, notice that if a collection of sections satisfy
ρUα
Uα∩Uβ

(sα) = ρ
Uβ

Uα∩Uβ
(sβ) for all α, β ∈ Λ, then for every pair Uα and Uβ

which both contain x0 we have sα = sβ. If neither open contain x0 then
ρUUα

= ρUUβ
= {∗} on all sections and so s = sα = sβ satis�es the gluing

condition. Notice if there is a pair Uα and Uβ such that Uα contains x0 but
Uβ does not then sα = ∗ and so we can take s = ∗ ∈ S as the section which
satis�es the gluing condition.

7. The presheaf HV is a sheaf. Knowing this we will call it the sheaf repre-

sented by V .

8. The presheaf of sections is indeed a sheaf because of how we can glue con-
tinuous functions much like on the sheaf OY

X . We therefore refer to this
presheaf instead as the sheaf of sections .

5.2 Stalks

Let us consider the behaviour of a sheaf at a particular point in our topology.
Because points are often not open sets the best we can do is to consider the
collection of opens around a point.

De�nition 5.2.1. Let F be a presheaf of a topological space X. Let x be a point
of X and {Uλ}λ∈Λ be the collection of open sets of X containing the point x. Let
⨿λ∈ΛF (Uλ) denote the set of pairs (Uλ, s) for s ∈ F (Uλ). De�ne an equivalence
relation on this set such that (U, s) ∼ (V, s′) if there exists an open neighbourhood
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W of x contained in U ∩ V such that ρUW (s) = ρVW (t). A stalk Fx of a presheaf
F at x is the set ⨿λ∈ΛF (Uλ)/ ∼ and a germ is the equivalence class of a section
sx under this relation.

If we treat {Uλ}λ∈Λ as a poset category then the stalk can be de�ned as the
colimit of the functor {Uλ}opλ∈Λ → Set [10]. The stalk is e�ectively taking sections
to be equivalent if they are equal on some small open neighbourhood.

Example 5.2.2. Take the presheaf F of analytic functions on R and consider
the stalk at 0. Two sections (analytic functions) will be equivalent in a stalk only
if they're the same function on some small open neighbourhood of 0. This is only
satis�ed if all derivatives of our sections are the same at 0 and hence, only if they
have the same Taylor expansion at 0.

Example 5.2.3. Consider the sheaf of sections F of the map eix : R → S1. The
sections s of an open U ⊆ S1 by de�nition must satisfy eix = es(e

ix) on U . This is
only satis�ed on an open interval by s : eix 7→ x+2πn for n ∈ Z and so these are
the sections of U for each non-empty U . The equivalence relation de�ned by the
stalk says that two sections s(eix) = x + 2πn and t(eix) = x + 2πm on opens V
and U are equivalent if and only if they are the same map when restricted to the
intersection V ∩U , if this intersection is non-empty this is precisely when n = m
and so the stalk Fz at some point z is simply all maps which send eix ∈ S1 to
x+ 2πn.

5.3 The Étalé Space, Shea��cation, and
Connectedness

5.3.1 Étalé Spaces

We have found plenty of examples of presheaves which are not sheaves. There
exists a process called shea��cation which allows us to generate a sheaf from a
presheaf. The étalé space is the tool we use to make this construction.

De�nition 5.3.1. For a presheaf F : Op(X)op → Set, the étalé space is the
disjoint union of all stalks,

Ét(F ) :=
⊔
x∈X

Fx.

For every section s of all opens U ⊆ X de�ne the collection of maps σs : U →
Ét(F ) which each act on U by σs : x 7→ sx ∈ Ét(F ). The topology given to Ét(F )
is the �nal topology on the collection of maps σs. That is, Ét(F ) has the �nest
topology such that these maps are all continuous.

We can describe the category of presheaves as objects with natural transfor-
mations as morphisms. We can just as easily describe the category of étalé spaces
as a subcategory of Top. In this context we see that Ét is a functor between
these two categories.
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There is an obvious map from an étalé space to back to the topological space
on which the presheaf is de�ned. We denote this map πF : Ét(F ) → X and it
sends every element of a stalk Fx 7→ x ∈ X. Notice that the maps σx are all
sections of πF because πF ◦ σs(x) = πF (sx) = x. Another useful property of πF

is the following.

De�nition 5.3.2. A local homeomorphism is a continuous map f : X → Y
such that for every point x ∈ X, there exists a local neighbourhood x ∈ U such
that f restricted to U de�nes a homeomorphism U → f(U). Two spaces are
locally homeomorphic if there exists a local homeomorphism between them.

Notice that, as one might expect, every homeomorphism f : X → Y is a
local homeomorphism because the domain X de�nes a neighbourhood of every
point on which f is a homeomorphism. Notably, a local homeomorphism is the
de�nition required to describe a manifold.

De�nition 5.3.3. A manifold is a topological space which is locally homeo-
morphic to Euclidean space.

Local homeomorphisms are important to us because the map πF : Ét(F ) → X
is a local homeomorphism. In fact, the de�nition of the étalé space is often taken
as the pair of a topological space and a local homeomorphism [9, page 18].

By de�nition we know that all sheaves are presheaves. We can also create a
sheaf 'generated' from a given presheaf using the tools we've discussed.

De�nition 5.3.4. For a presheaf F : Op(X)op → Set the shea��cation of F is
the sheaf of sections of the map πF : Ét(F ) → X. We denote the shea��cation of
F as aF := ΓπF

: Op(X)op → Set. We call the sheaf aF the associated sheaf .

The shea��cation satis�es the following universal property.

Lemma 5.3.5 (Universal property of shea��cation). Let F be a presheaf, G be
a sheaf, and a natural transformation η : F → G. There exists a unique natural
transformation aF → G such that the following diagram commutes.

F G

aF

η

∃!F → ΓπF

Figure 5.1: The universal property of shea��cation.

Proof. This is shown Theorem 4.2 of [9].

The shea��cation of a presheaf is certainly a sheaf because every presheaf of
sections is a sheaf. The universal property shows us that aF ∼= F if F is a sheaf.
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Lemma 5.3.6. Let F : Op(X)op → Set be a sheaf. The shea��cation aF is
naturally isomorphic to F .

Proof. Notice that F with the identity satis�es the universal property of Figure
5.1. That is, let G be a sheaf with natural transformation a : F → G. Since
f = a is the only map to satisfy f ◦ id = a, then a is the unique map which allows
the following diagram to commute.

F G

F

a

∃!aidF

In particular take G = aF and a as the map F → ΓπF
. Since aF satis�es the

universal property by Lemma 5.3.5 we know the following diagram commutes.

F F

aF

idF

∃!fa

aF

∃!aa

Furthermore, since aF satis�es the universal property we know there is a
unique map which commutes in the diagram,

F aF

aF

a

∃!a
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Since idaF commutes in this diagram it must be the unique map. In particular,
we know af = idaF and by a similar argument we see fa = idF . Hence, a is a
natural isomorphism and so F ∼= aF .

Since F ∼= aF when F is a sheaf, we now can see why we use the term
`section' to describe both the sections of a map, and elements of F (U). In a sheaf
the sections of πF over U are exactly the sections in F (U). In fact the construction
of πF de�nes an equivalence of the category of local homeomorphisms of a space
X and the category of sheaves over X [4, Theorem 6.2]. Furthermore our map
a : F → aF de�nes a functor from the category of presheaves over X to the
category of sheaves on X. Finally, the construction of the étalé space provides
a functor from presheaves on X to the local homeomorphisms π on X. This
relationship is described by the following diagram.

PSh(X) LH(X)

Sh(X)

Ét

πa

An illustrative example of shea��cation of a presheaf is the following.

Example 5.3.7. The constant presheaf F : Op(X)op → Set where F (U) = S
for all opens U is not a sheaf. The associated sheaf of F is aF = ΓπX

where πX

is the projection Ét(X) → X. We need to �nd how aF acts on the opens of X.
Consider the set aF (∅). We can observe that every section σ : ∅ → Ét(X) is the
same function because there are no elements in ∅ and so we can see that aF (∅)
is a 1 point set containing only the empty function.

Now we consider non-empty U . First let us consider the étalé space of F .
Notice that for any point x, the stalk is Fx = S. Hence, the étalé space is the
disjoint union of S for each point in X and so is isomorphic as a set to S × X.
We require the S × X to have the �nal topology on the maps σs : x 7→ sx.
This is achieved by giving the X component of the product the topology of X
and S the discrete topology. We shall denote this topological space as Sδ × X.
Now to calculate the sections of πF , notice that πF ◦ σ(x) = x precisely when
σ(x) = (s, x) ∈ Sδ×X. If U ⊆ X is a connected open set, then by the requirement
of continuity, the sections of πF on U are simply the maps σs which send x to (s, x)
for some constant s ∈ S . However, if U is a union of n connected components
then a section σ can map each connected component to a di�erent s ∈ S. So
each section of πF over U is equivalent to a choice of s ∈ S for each connected
component in U and hence aF (U) ∼= Sn.

Since this sheaf is generated by the constant presheaf we call it the constant
sheaf . The constant sheaf on a set S is denoted FS.
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We have a clear connection between sheaves and the collection of connected
components of a topological space. For simplicity in exploring this we will consider
spaces where path connected and connected are equivalent properties. Such a type
of space is the following.

De�nition 5.3.8. A topological space X is locally contractible if for every
point x ∈ X and every open neighbourhood U of x there exists a contractible
open subset V ⊆ U .

Connected and path connected are equivalent properties in a locally con-
tractible space. This is because if an open U is connected, it cannot be the union
of two or more disjoint opens. Hence, any two points in U , can be connected by
a series of contractible open sets. These contractible opens de�ne a path between
our two points by describing paths from the contraction point of each open to a
point in their intersections.

Examples of locally contractible spaces include Euclidean space, n-spheres and
projective space and all manifolds. To describe connectedness in a topological
space we will use the following map.

De�nition 5.3.9. Let X be a topological space and ∼ be an equivalence relation
where x ∼ y when there is a path connecting x and y. The 0th homotopy set

π0 : X := X/ ∼ sends each point x ∈ X to its equivalence class under ∼.

For example, if X is path connected then π0(X) = {0}. If X has the discrete
topology then π0X = X. Of course on a locally contractible space we could
equivalently say that π0X is the set of the connected components of X.

Theorem 5.3.10. Let X be a locally contractible space X. Let the functor F :
Set → Set send a set S to the to the set of global sections of the constant sheaf
FS : Op(X)op → Set. The functor F is represented by π0(X).

Proof. Recall that in Example 5.3.7 we saw that the constant sheaf FS is a functor
which sends an open set U to a copy of S for each connected components of U .
In a locally contractible space we know that the set of connected components is
given by π0(U). Hence, we when we consider the global sections of FS, we have
the following,

FS(X) ∼= S|π0(X)| ∼= hom(π0(X), S)

In particular this means that F : S 7→ FS(X) is equivalent to the functor
hom(π0(X),−).

In particular if we take idSet to be the identity functor of Set and then
by the Yoneda lemma we have hom(F, idSet) ∼= hom(hom(π0(X),−), idSet) ∼=
idSet(π0(X)) = π0(X). This means that complete knowledge of the the constant
sheaves on a locally contractible topological space X tells us exactly how π0 acts
on X. As such, we can de�ne π0 through purely categorical means.
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Conclusion

Category theory takes familiar structures and extracts their most basic features.
By studying categories and their morphisms we can use general properties to show
speci�c and often surprising results. We have looked at a variety of categories,
functors, natural transformations, and limits. All of these allow us to describe
shared properties of di�erent categories.

We have proved the Yoneda lemma, a surprisingly powerful result. In this
thesis we showed the Yoneda lemma is applicable to both Cayley's theorem and
the connectedness of a topological space.

For a reader further interested in studying category theory I would highly
recommend Emily Riehl's �Category Theory in Context� [7]. In particular, the
study of adjoint functors is an important topic that we did not have time to cover
here.

We have taken functors and used them to de�ne sheaves. These tools have
then been applied to construction of the 0th homotopy set π0. A similar process
allows the construction of the fundamental group π1 through the use of what are
called �locally constant sheaves". In fact, sheaves can be used to de�ne all of the
homotopy groups as proven in [11].
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